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Energy Storage Systems: Space Applications
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Energy storage systems have been used in 99% of the robotic andEnergy storage systems have been used in 99% of the robotic and 
human space missions launched since 1960



Space Applications of Energy Storage Devices 
• Energy storage are used space missions to: 

– Provide primary electrical power to launch 

D ltD lt 22vehicles,crew exploration vehicles, planetary 

probes, astronaut equipment

Store electrical energ in solar po ered

DeltaDelta--22 Galileo

– Store electrical energy in solar powered 

orbital and Surface missions and provide 

electrical energy during eclipse periods MERMERMERMER

Space Station

electrical energy during eclipse periods

– Meet peak power demands in in nuclear 

powered rovers, landers and planetary orbiters

MERMERMERMER

Europa OrbiterEuropa Orbiter



Performance Envelope of Electrochemical 
Power Sources
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Energy Storage Systems:
Applications

System Application

Applications

System Application

Capacitors
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State-of-the-Practice Energy Storage DevicesState of the Practice Energy Storage Devices



SOP Space Batteries
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SOP Fuel Cells
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Energy Storage  Systems: 
Current State-of-PracticeCurrent State of Practice

System Technology Mission Specific 
Energy, 
Wh/kg 

Energy 
Density, 

Wh/l 

Operating 
Temp. 

Range, °C

Cycle Life Mission Life 
(yrs) 

Issues 

D lt L h Li it d

Primary 
Batteries 

Ag-Zn 
Li-SO2, 

 Li-SOCl2 

Delta Launch 
Vehicles 
Cassini Probe 
MER Lander 
Sojourner 
Rover

90-250 130-500 -20 to 60 1 1-9 

• Limited 
operating 
temp range 
• Voltage 
delay 

Rover

Rechargeable 
Batteries 

Ni-Cd, 
Ni-H2 

 

TOPEX 
HST 
Space Station 24-35 10-80 -5 to 30 > 50,000 

@25%DOD >10  

•Heavy and 
bulky 
•  Limited 
operating 
temp range p g

 

Adv. Rech. 
Batteries Li-Ion 

Spirit & 
Opportunity 
Rovers 

90 250 -20-30 > 400 @ 
50% DOD >2 

Cycle Life 

 Power Specific Power Efficiency Maintenance  
  Rating

(kW) 
Power 
(W/kg) 

Density
(W/l) 

Efficiency
% Frequency

(hrs) 

Fuel Cells Alkaline  
H2-O2 

Apollo, 
Shuttle 10 90 155 70% 2600 

Heavy and 
Bulky 

Limited to 
h t i ishort missions 

 



The Evolution Of  Rechargeable 
Battery Technology

• Energy storage technologies take 10-15 years for development and infusion 
into missions.

• We are at the threshold of implementing Li-ion for space missions• We are at the threshold of implementing Li-ion for space missions. 



Future Space Missions and their Needs



Solar System Exploration Mission Concepts- Far Term
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Mars Exploration Architecture
2009 - 2024
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Summary of Energy Storage Technology Needs of 
NASA Planetary Science /Solar System Exploration 

Mi iMissions
1. Low temperature batteries (primary(<-100oC) and 

rechargeable (<-60oC) batteries ) for planetary probes Europa Europa rechargeable (<-60oC) batteries ) for planetary probes 

and Mars surface missions

2. High temperature batteries (> 475 0 C) for inner 

l t i i

LanderLander

planetary missions

3. Long calendar life ( >15 years), high specific energy ( 

>120 Wh/kg) & radiation tolerant rechargeable batteries 
Venus 

Sample
Return

Venus 
Sample
Return

for outer planetary missions

4. High specific energy ( >120 Wh/kg ) and Long cycle life 

( >30,000 cycles) rechargeable batteries for Mars and 

ReturnReturn

earth orbital SEC, SEU & origins missions

5. High specific energy primary batteries ( >500 Wh/kg) for 

planetary probes

Europa OrbiterEuropa Orbiter

planetary probes



Exploration Missions (2010-2030) 

Crew Exploration  Vehicle at the 
International Space StationInternational Space Station

Crew Exploration Vehicle
(CEV)

CEV and LSAM

LSAM

Crew Launch Vehicle
(CLV) Lunar OutpostCargo Launch Vehicle

(CaLV)

The role of the Exploration Systems Mission Directorate (ESMD) is toThe role of the Exploration Systems Mission Directorate (ESMD) is to 
develop a constellation of new capabilities and supporting  
technologies that enables sustained and affordable human and robotic
exploration of the Moon, Mars, and beyond.



NASA’s Exploration Roadmap



Summary of Energy Storage Technology 
Needs of Future Exploration Missions

1. Safe, High Specific Energy  and Long Life Rechargeable Li-

Ion Batteries (32V, 1-15 kWh )  are required for Crew 

(CLV 
15-25 kWh)

Exploration Vehicle (CEV), Crew Launch Vehicle (CLV) , Heavy 

Lift Launch Vehicle (HLLV), Lunar Surface Ascent Module 

(LSAM), Astronaut Extravehicular Activity (EVA)  Suit,  Surface 

(CEV 12-15 kWh)

(LSAM)

systems etc.,

2. High specific  Power Safe, and Lonf Life Polymer 

Electrolyte Membrane and Regenerative Fuel Cells areElectrolyte Membrane and Regenerative Fuel Cells are 

required for  a wide range of surface elements, including 

advanced EVA, pressurized and unpressurized rovers, and for Un Pressurized 
R 2 4 kW

Lunar Pressurized 

large surface power plants as part of a PV/RFC power system.

• 1KW max class for Advanced EVA PLSS, 

• 2-8 KW class for un-pressurized rovers 

Rover 2-4 kW Rover 15-25  kW

• 25KW class for photovoltaic (PV) / regenerative fuel cell (RFC) 

power plant and pressurized rover applications.
Lunar Habitat (15-25 kW)EVA (0.2-1.0 kW)



Advanced Energy Storage SystemsAdvanced Energy Storage Systems
Under Development



Space-Rated Li-Ion Batteries
Product• Product 

– Develop space-rated high specific Energy 
Li-ion batteries for future human and robotic 
exploration missions 

• 200Wh/kh (Cell)
• 160 Wh/kg (Battery)
• 300 Wh/l (Battery)
• > 30 K cycles (30%DOD)

60 t 60 C O ti• -60 to + 60 C Operation

• Schedule
– 2006-2010

• Sponsor
– NASA-ESMD

• Team:   
– NASA-GRC(lead(, NASA-JSC, NASA-JPL, 

NASA-MSFC)NASA-MSFC)
– UT Austin, Caltech, USC and Industry:



PEM Fuel Cells
P d t• Product

– Develop PEM primary and regenerative fuel cells for 
future human lunar exploration missions 

• 1-kW max class for advanced EVA portable life support 
systems (primary fuel cell)

• 8-kW class for un-pressurized rovers (primary fuel cell)
• 25-kW class for RFC surface power plants and 

pressurized rovers (Regenerative Fuel Cell).

S h d l
EVA (0.2-1.0 kW)Un Pressurized 

Rover 2 4 kW• Schedule

– 2006-2010

( )Rover 2-4 kW

• Sponsor
– NASA-ESMD

• Team:   
– NASA-GRC (lead), NASA-JSC, NASA-JPL, Lunar Habitat (15-25 kW)Lunar Pressurized ( )
– UT Austin, Caltech, USC and Industry:

Lunar Habitat (15 25 kW)
Rover 15-25  kW



Summary and Conclusions
• Energy storage systems have been used in 99% of the robotic and human space missions launched 

since 1960
– Launch Vehicles: Ag-Zn batteries
– GEO LEO Spacecraft: Ni-Cd Ni-H2GEO, LEO Spacecraft: Ni Cd, Ni H2
– Space Shuttle: Alkaline Fuel Cells

• Future space missions have unique energy storage requirements
– Large energy storage Capability (`MWH)
– Mass and volume efficiency (2-10 X Vs SOP)– Mass and volume efficiency (2-10 X Vs SOP) 
– Long life (> 15 years)
– Ability to operate in extreme environments

• State of practice primary and rechargeable batteries have limited performance capabilities and do not 
meet many of the above mentioned needsmeet many of the above mentioned needs.

– Limited life ( 5-10 years )
– Limited operating temperature range (-20o-60oC for rechargeable, -40o – 60oC)
– Radiation tolerance poorly understood
– Heavy and bulky ( 30 Wh/kg for rechargeable)Heavy and bulky  ( 30 Wh/kg for rechargeable)

• Development of advanced energy storage technologies required to meet future space mission needs
– Fuel Cells: Medium power PEM Fuel Cells, Regenerative fuel cells, Small fuel cells 
– Primary Batteries: High specific energy, RAD hard Low temperature batteries
– Rechargeable Batteries: High Specific energy, Long Life, RAD Hard, Low Temp.  Batteries
– Fly wheels
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Characteristics of SOP Primary Batteries C a acte st cs o SO a y atte es

Type 
Application Mission Specific 

Energy, 
Wh/kg (b) 

Energy 
Density, Wh/l 

(b) 

Operating 
Temp. 

Range, °C 

Mission 
Life (yrs) 

Issues 

Cell  238 375 -40 to 70 <10 

Li-SO2 Battery 

Galileo Probe  
Genesis SRC 
MER Lander 
Stardust SRC

90-150 130-180 -20 to 60 9 
Voltage Delay 

 

Stardust SRC
        

Cell  390 878 -30 to- 60 >5 

Li-SOCl2

Sojourner 
Deep Impact 

200 2 0 380 00 20 30
Severe voltage 

d lSOC 2 Battery DS-2 
Centaur Launch 
batteries 

200-250 380-500 -20 to 30 < 5 delay

        

Li CF Cell 614 1051 20 to 60 Poor power 

Limitations
• Moderate specific energy (100-250 Wh/kg)

Li-CFx Cell 614 1051 -20 to 60 p
capability 

 

p gy ( g)
• Limited operating temp range (-40 C to 70oC)  
• Radiation tolerance poorly understood
• Voltage delay



Characteristics SOP Rechargeable Batteries
Technology Mission Specific Energy Operating Design Cycle life IssuesTechnology Mission Specific 

Energy, 
Wh/kg

Energy 
Density, 

Wh/l

Operating 
Temp. 

Range, oC

Design 
life, 

Years

Cycle life Issues

Ag-Zn Pathfinder 
Lander

100 191 -20 t0 25 2 100 Electrolyte Leakage
Limited Life

Ni Cd Landsat 34 53 10 to 25 3 25 40K HeavyNi-Cd Landsat, 
TOPEX

34 53 -10 to 25 3 25-40K Heavy
Poor Low Temp. Perf.

Super Ni -Cd Sampex 
Battery, Image  

28-33 70 -10 to 30 5 58K Heavy
Poor Low Temp. Perf

IPV Ni H2 Space Station 8 24 10 10 to 30 6 5 >60K Heavy BulkyIPV Ni -H2 Space Station, 
HST, Landsat 7

8-24 10 -10 to 30 6.5 >60K Heavy, Bulky 
Poor Low Temp. Perf

CPV Ni-H2 Odyssey, Mars 
98
MGS, EOS 
T

30-35 20-40 -5 to 10 10 to 
14

50 K Heavy, Bulky 
Poor Low Temp. Perf

Terra
Stardust, MRO

SPV Ni -H2 Clementine, 
Iridium

53-54 70-78 -10 to 30 10 <30 K Heavy 
Poor Low Temp. Perf

Li Ion MER Rover 90 250 20to 30 1 >500 Limited Life

Limitations of Ni-Cd & Ni-H2 batteries:
• Heavy and bulky
• Limited operating temp range ( 10oC to

Li-Ion MER-Rover 90 250 -20 to 30 1 >500 Limited Life

• Limited operating temp range (-10oC to 
30oC)  
• Radiation tolerance poorly understood. 



Characteristics of Space Fuel cells C a acte st cs o Space ue ce s
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Energy Storage Systems: 
Future Space Applications

Venus Sample 
Return

Venus Sample 
Return

Europa OrbiterEuropa Orbiter

Mars Out  PostMars Out  PostLunar Surface 
Exploration
Lunar Surface 
Exploration

CEV

ExplorationExploration

Future human and robotic exploration missions require advanced energy storage systems. p q gy g y
• Critical capability requirements include: mass and volume efficiency (2-10 X Vs 

SOP), long life, safety, and the ability to operate in extreme environments.



Summary

• NASA is planning a number of exciting robotic and human space 

exploration missions for the exploration of space

– Robotic Lunar Exploration Missions (>2008)

– Mars Science Laboratory (2009)

– Crew Exploration Vehicle (> 2010)

– Jupiter Polar Orbitter (> 2011)

– Europa/ Titan Orbiters/Explorers (>2016)

– Inner Planetary Exploration Missions (>2014)

Human Lunar Surface Missions ( > 2018)– Human Lunar Surface Missions ( > 2018)

• Future NASA missions require energy storage devices with mass and 

volume efficiency, long life capability and can operate safely in extremevolume efficiency, long life capability  and can operate safely in extreme 

environments



Adv. Energy Storage Technologies 
Under Development
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